

Evolution Fasteners (UK) Ltd Units 2A & 2B Clyde Gateway Trade Park Dalmarnock Road, Rutherglen, Glasgow G73 1AN Tel: +44 (0)141 647 7100 / Fax: +44 (0)141 647 5100 Email: technical@evolutionfasteners.co.uk

www.evolutionfasteners.co.uk

PRODUCT DATASHEET METAL FRAMING TEK SCREW

Product Details

Designed for: Drive bit: Thread form:

Shank material: Material grade: Recommended drill speed:

Fixing steel to steel Phillips 2 Twin, coarse thread (Tek 2),(Tek 3)/ fine thread (Tek 5) Carbon steel AISI C1022 500hr Evoshield® 1500 - 2500 RPM

2002/95/EC

Metal framing tek screw range

Coating:

Product Code	Size	Drill point	Effective thread length	Drilling Capacity	Head style	Steel thickness
TSPH4.8-16-3	4.8x16mm	Tek 3	10.0mm	1.2 – 3.5mm	Pancake	1.2 – 3.5mm
TSPH5.5-19-3	5.5x19mm	Tek 3	14.0mm	1.2 – 3.5mm	Pancake	1.2 – 3.5mm
TSPH5.5-25-3	5.5x25mm	Tek 3	18.0mm	1.2 – 3.5mm	Pancake	1.2 – 3.5mm
TSLP4.8-22-2	4.8x22mm	Tek 2	15.0mm	0.8 – 2.5mm	Low profile wafer	Up to 2.5mm
TSLP5.5-38-5	5.5x38mm	Tek 5	30.0mm	4.0 – 12.5mm	Low profile wafer	4.0 – 12.5mm

Technical Data

Hardness	Rating (Vicl	kers scale)	Ultimate Mechanical Performance			
Diameter	Surface Hardness	Surface Core Hardness Hardness Diameter		Tensile Strength	Shear Strength	
4.2mm	600.0HV	450.0HV	4.2mm	7.5kN	5.2kN	
4.8mm	590.0HV	440.0HV	4.8mm	8.1kN	6.4kN	
5.5mm	600.0HV	450.0HV	5.5mm	11.5kN	10.3kN	

Tek 3 range – Unfactored pull out values							
Diameter	Drill point	Steel Thickness					
		1.2mm	1.6mm	2.0mm	2.5mm	3.0mm	4.0mm
4.8mm	Tek 3	1.3kN	1.9kN	2.3kN	3.2kN	4.5kN	5.2kN
5.5mm	Tek 3	2.1kN	2.9kN	3.6kN	4.8kN	5.7kN	6.3kN

Tek 5 range – Unfactored pull out values								
Diameter	Drill point	Steel Thickness						
		4.0mm	5.0mm	6.0mm	8.0mm	10.0mm	12.5mm	
5.5mm	Tek 5	5.8kN	7.1kN	8.8kN	10.7kN	12.9kN	16.3kN	

NOTE: The results expressed in the datasheet are taken as mean loads from a range of empirical tests and are ultimate unfactored loads. Each specifier or end user should make his/ her own decision on what safety factors to use relevant to their design application (such as BS 5950, EN 1991, etc).

Errors and Omissions Excepted. This document shall not be reproduced except in full, without written approval of Evolution Fasteners (UK) Ltd. Data in this document relates only to the specific items described therein. This document is provided and published without prejudice, without recourse, non-assumptist, errors and omissions excepted, no assured value, no liability and all rights reserved.

ABOUT OUR TESTING

All test results were derived from empirical testing performed by ETAS (Evolution Testing & Analytical Services), a UKAS (United Kingdom Accreditation Service) accredited testing laboratory (Accreditation No. 7485). The following tests were performed to the following standards.

Testing Procedures

7485

Test/ Parameter	Standard/ Method/ Procedure				
Ultimate Tensile	ISO 6892-1: 2009 <i>"Metallic materials – tensile testing – Part 1: Method of test at room temperature".</i>				
Ultimate Shear	MIL-STD-1312-13 <i>"Military Standard: Fastener test method (Method 13)</i> <i>Double shear test".</i>				
Pull Out (Withdrawal Force)	EN 14566: 2009 <i>"Mechanical fasteners for gypsum plasterboard systems. Definitions, requirements and test methods".</i>				
Pull Over	EN 14592: 2008 <i>"Timber structures. Dowel type fasteners. Requirements".</i>				
Hardness	ISO 650 7-1: 2005 "Metallic materials – Vickers hardness test – Part 1: Test method".				
Corrosion Resistance	EN ISO 9227: 2012 "Corrosion tests in artificial atmospheres. Salt spray tests".				
Drilling Time Test	EN 14566: 2009 <i>"Mechanical fasteners for gypsum plasterboard systems. Definitions, requirements and test methods".</i>				
Laboratory Contact Details	Evolution Testing & Analytical Services Units 2A & 2B Clyde Gateway Trade Park Dalmarnock Road Rutherglen South Lanarkshire G73 1AN T: (0141) 643 4125 F: (0141) 647 5100 E: sales@etasuk.com				