

Evolution Fasteners (UK) Ltd Units 2A & 2B Clyde Gateway Trade Park Dalmarnock Road, Rutherglen, Glasgow G73 1AN Tel: +44 (0)141 647 7100 / Fax: +44 (0)141 647 5100 Email: technical@evolutionfasteners.co.uk

PRODUCT DATASHEET A4 STAINLESS STEEL MULTI-FIX SCREW

Product Details

Designed for:	Fixing timber battens, trunking, track and general components into concrete, masonry and timber
Head style:	5/16" Hexagonal
Material grade:	AISI 316/ A4
Shank Material:	Stainless Steel

A4 stainless steel multi-fix product range

Product Code	Size	Drill Point	Box Quantity	Carton Quantity
A4HH6.3-32-GP	6.3mm x 32mm	Gash Point	100	1,000
A4HH6.3-45-GP	6.3mm x 45mm	Gash Point	100	1,000
A4HH6.3-57-GP	6.3mm x 57mm	Gash Point	100	1,000
A4HH6.3-70-GP	6.3mm x 70mm	Gash Point	100	1,000
A4HH6.3-82-GP	6.3mm x 82mm	Gash Point	100	1,000
A4HH6.3-100-GP	6.3mm x 100mm	Gash Point	100	1,000

Technical Data

Hardnes	Hardness Rating (Vickers scale)			Unfactored Mechanical Performance				
Diameter	Surface Hardness Core Hardness			Diameter	Tensile Strength		Shear Strength	
6.3mm	577.4 HV0.3 465.1 HV0.3			6.3mm	18.7kN		8.9kN	
	Ultimate pull out loading from steel Steel substrate (S275 JR mild steel)							
Major dian	Major diameter Steel thickness			Steel thic	kness	St	eel thickness	
6.3mm	6.3mm 0.7mm			1.0mr	n		1.2mm	
Force 1.0kN		1.4kN			2.0kN			

Technical Data continued...

Ultimate pull out loading from timber						
Major diameter	Timber grade	Embedment depth	Load			
6.3mm	C16	25.0mm	2.3kN			
0.01111	010	35.0mm	3.7kN			

Ultimate Loading: Withdrawal Resistance (Concrete and Masonry Substrates)					
Embedment Depth (mm)	C25/30 Concrete (30N/mm2)	Aerated Concrete Block (7N/mm2)	Class A Engineering Brick (75 N/mm2)		
25.0	2,850 N	650 N	3,690		
35.0	6,890 N	1,010 N	9,670		

Characteristic/ Safe L	oading: Withdrawal Resist	ance (Concrete and Maso	nry Substrates, γ = 3.0)
Embedment depth (mm)	C25/30 Concrete (30N/mm2)	Aerated Concrete Block (7N/mm2)	Class A Engineering Brick (75 N/mm2)
25.0	950 N	210 N	1,230
35.0	2,290 N	330 N	3,220

Concrete and masonry setting information					
Substrate type	Category	Data			
All	Nominal embedment depth	35.0mm			
Non cracked concrete (>30N/mm2)	Minimum base material thickness Minimum screw spacing Minimum edge distance	100.0mm 55.0mm 55.0mm			
Cracked concrete (>30N/mm2)	Minimum base thickness Minimum screw spacing Minimum edge distance	100.0mm 40.0mm 55.0mm			

	Influence of Compressive Strength on Withdrawal Resistance (Reduction Factors)								
Nominal Anchor Diameter	Drill Hole Diameter	Embedment Depth		Comp	pressive S	trength –	Cube (EN	1992)	
(mm)	(mm)	(mm)	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	≥C50/60
6.3	5.15	25/0	0.6		1.0		1.	.2	1.3
0.5	5.15	35.0	0.7	1.0	1.1	1.2	1.3	1.4	1.5

	Influence of edge distance on loadings (reduction factor)									
Percentage of stated minimum	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
Reduction factor	N/A	N/A	N/A	N/A	N/A	0.75	0.80	0.85	0.90	1.00

NOTE: The results expressed in the datasheet are taken as mean loads from a range of empirical tests and are ultimate unfactored loads. Each specifier or end user should make his/ her own decision on what safety factors to use relevant to their design application (such as BS 5950, EN 1991, etc). Errors and Omissions Excepted.

Copyright $\ensuremath{\textcircled{C}}$ 2019 Evolution Fasteners (UK) Ltd. All rights reserved.

ABOUT OUR TESTING

All performance figures where derived from empirical testing (where applicable) performed by Evolution Testing Services (a trading name of Evolution Fasteners (UK) Ltd), which is a UKAS accredited testing laboratory (Accreditation No. 7485). The following tests were performed in the preparation of this datasheet (note that tests marked "NC" are not included on our Schedule of Accreditation):

Testing Procedures

7485

Test/ Parameter	Standard/ Method/ Procedure
Ultimate Tensile ^{NC}	ISO 6892-1: 2009 <i>"Metallic materials – tensile testing – Part 1: Method of test at room temperature".</i>
Ultimate Shear	MIL-STD-1312-13 "Military Standard: Fastener test method (Method 13) Double shear test".
Pull Out (Withdrawal Force)	EN 14566: 2009 <i>"Mechanical fasteners for gypsum plasterboard systems. Definitions, requirements and test methods".</i>
Pull Over	EN 14592: 2008 <i>"Timber structures. Dowel type fasteners. Requirements".</i>
Hardness	ISO 650 7-1: 2005 <i>"Metallic materials – Vickers hardness test – Part 1: Test method".</i>
Corrosion Resistance	EN ISO 9227: 2012 "Corrosion tests in artificial atmospheres. Salt spray tests".
Drilling Time Test	EN 14566: 2009 <i>"Mechanical fasteners for gypsum plasterboard systems. Definitions, requirements and test methods".</i>
Laboratory Contact Details	Evolution Testing & Analytical Services Units 2A & 2B Clyde Gateway Trade Park Dalmarnock Road Rutherglen South Lanarkshire G73 1AN T: +44 (0)141 647 7100 F: +44 (0)141 647 5100 E: sales@etasuk.com